S SmartOS

Adding per-thread
caching to libumem

Robert Mustacchi

What is libumem?

S SmartOS

e Adrop in replacement implementation of malloc(3C) and free
(3C) Adding per-thread caching to libumem

e \Which are the functions
programs

 The functions people ca

e The tools to figure out w

Friday, August 17, 2012

that are called to allocate memory in C

| that causes VSZ and RSS go up in ps

nere that's coming from

Why does it matter? 3 SmartOS

e Every program ends up calling malloc at some point in time
e |In C++ calling new() ends up using malloc
e (Garbage collected languages still end up calling malloc

e Examples:
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -c kstat
671598 (Perl)
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -¢ hg
3801 (Python)
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -c 'vmadm list'
2754 (Node.js)

Friday, August 17, 2012

Why does it matter? 3 SmartOS

Flame Graph

[] l-_=
] ..
[[T

AT

(anon) as Module._extensions..js at module.js position 26014
(anon) as Module.load at module.js position 19480
(anon) as Module._load at module.js position 16038

(anon) as startup.process._tickCallback at node.js position 15140

node-32" _ZN4nodeSStartEiPPc
Il node-32" main

| T node-..
Function:

Friday, August 17, 2012

How malloc works - circa 1988 3 SmartOS

e Only one thread can be in malloc at a time
e We keep track of free space in a binary tree

e Search through the binary tree to find something that fits your
request

e If you can’t find something that fits, increase the size of the heap

Friday, August 17, 2012

Enter the slab allocator - circa 1994 S SmartOS

e Created by Jeff Bonwick for Solaris 2.4
e Object caching

e Lots of objects are commonly allocated and freed
e Allocate a bunch and have them be primed
e Rather than deallocate it every time, but it back on stand by

e Used all over the kernel
 |nodes, ARC data, message blocks

e |Lock is on the cache, only one thread can be in the cache at a
time

e Adds support for basic debugging, use after free, etc.

Friday, August 17, 2012

Enter Magazines - Circa 1995 3 SmartOS

e |ntroduced by Jeff Bonwick in Solaris 2.5.

 Having to lock the entire object cache doesn’t scale with many
CPUs

e Each CPU gets a magazine per cache (think automatic weapon)

e When the magazine runs out, grab the global cache lock and
reload

e Magazine size is increased dynamically based on contention

e Continue to pad things onto hardware caches and use cache
coloring

Friday, August 17, 2012

Enter libumem - 2001 S SmartOS

e |Introduced by Jonathan Adams and Jeff Bonwick in Solaris 9u3
e Take the kernel allocator and bring it to userland

e Brings all of the debugging to userland
 Once you use ::findleaks, ::whatis, it's hard to go back

e Use caches for malloc

e Use itin two ways:
e Add -lumem to your Makefile
e Use LD PRELOAD=libumem.so

Friday, August 17, 2012

Where does libumem start to break down? £ SmartOS

e Grabbing an uncontended lock in the kernel is cheap
e |t's 4 instructions!
e Optimized for non-contention

e Grabbing an unconteded lock in userland is more expensive

e Userland locks need to deal with many more edge conditions
 The kernel exploits unholy knowledge to accelerate in-kernel mutexes

e Every allocation requires you to grab a lock

e Some applications are bad actors, they do lots of mallocs and

frees of the same sized data
e We've seen on the order of 10k-100k per second

e Customers complain because other mallocs are faster

Friday, August 17, 2012

Focusing on the right problem S SmartOS

e Our problem is that we need to synchronize

e Just rewriting everything to be lockfree using atomic operations doesn’t
magically solve our problems

e Eliminate the synchronization

e Add a per-thread cache

Friday, August 17, 2012

Careful planning 3 SmartOS

e \When you allocate memory a tag is prepended
e |tis either 8 or 16 bytes (depending on size and architecture)
e We don’t want to increase that

e We don’t want to increase fragmentation
e \We want to build our cache based on the umem cache size

e The size of the caches aren’t known at compile time

Friday, August 17, 2012

Dynamic Generation 3 SmartOS

e libc gives each thread 16 slots in the thread’s uberdata
 During umem_init we determine the final set of cache sizes

e Each uberdata slot is the head of a linked list of recently freed
buffers

e \We use that information and dynamically generate the machine

code for malloc and free
e Need to avoid loads for performance

e Each slot maps directly to one of the first sixteen caches

e Threads free their cache when they exit

Friday, August 17, 2012

Per-thread caching in action

4b allocations with 1 thread{s}

S SmartOS

linux
libe
libunen
ptcunen

Tine{s)

Friday, August 17, 2012

Per-thread caching in action 3 SmartOS

Linux and Smnart0S snall cache sizes = 512 H iters {64-bit)

200 250
Halloc{bytes)

Friday, August 17, 2012

Our original flamegraph 3 SmartOS

Flame Graph

l
I
L ||

la |
[— I
i1 1) | node-3..
| 8ee | node-32"_2N..|
node=3.] |J 1§ node-32"_ZN2v.. |

((internal))
((entry))

AllENS_6HandleINS_60bjectEEEIPNS1_INS_SValueEEE

[inode-32"main
||l ,node-32" _start ,node-32..
Function:

Friday, August 17, 2012

void *ptcmalloc(size_t orig_size):

size_t size = orig_size + 8;
if (size > UMEM_SECOND_ALIGN)
size += 8

if (size € orig_size)
goto tomalloc: I This is overflow

if (size > cache_max)
goto tomalloc

tmem_t *t = (uintptr_t)curthread() + umem_thr_offset:

void **roots = t->tm_roots:

/

01 #define PTC_MALINIT_JOUT 0x13

02 #define PTC_MALINIT_MCS Oxla

03 #define PTC_MALINIT_JOV 0x20

04 #define PTC_MALINIT_SOFF 0x30

05 static const uint8_t malinit[] = {

0B 0x48, 0x8d, 0x77, 0x08, /* leaq 0x8(Zrdi),%rsi */
07 0x48, 0x83, Oxfe, 0x10, /* cmpq $0x10, Zrsi */

08 0x76, Ox04, /* jbe +0x4 */

09 0x48, 0x8d, 0x77, 0x10, /* leaq 0x10(%rdi),2Zrsi */
10 0x48, 0x39, Oxfe, /* cmpq 2rdi,Zrsi */

11 0x0f, 0x82, 0x00, 0x00, 0x00, 0x00, /* jb +errout */
12 0x48, 0x81, Oxfe,

13 0x00, 0x00, 0x00, 0x00, /* cmpq sizeof ($CACHE), Zrsi */
14 OxOFf, 0x87, 0x00, 0x00, 0x00, 0x00, /* ja +errout */
15 0x64, 0x48, 0x8b, Ox0c, 0x25,

16 0x00, 0x00, 0x00, 0x00, /* movq Zfsi0x0,2rcx */
17 0x48, 0x81, Oxcl,

18 0x00, 0x00, 0x00, 0x00, /* addq $SOFF, Zrcx */

19) 0x48, 0x8d, 0x51, 0x08, /* leaq 0xB(Zrcx),drdx */
20 3

*******’*******1

Friday, August 17, 2012

Tuning and introspection 3 SmartOS

e Default cache size is 1 MB
e Tuned via UMEM_ OPTIONS=perthread cache=size

e Bryan Cantrill added support to ::umastat to see what's being
used

memory % % % % B B N B N B % Bk b B B N B K
tid cached cap 8 16 24 32 40 48 56 64 80 96 112 128 160 192 224 256

1 210K 206 @06 © 2 1 © 0 0 0 0 06 © 0 93 o0 1 o
2 e o © 06 0 0 o 0 06 0 0 0 0 o 0 0 o0 o
3 e o © 06 0 0o 0 0 0 0 0 0 0o o o0 o0 o0 o

Friday, August 17, 2012

References S SmartOS

e Original slab allocator paper: http://static.usenix.org/publications/
library/proceedings/bos94/full_papers/bonwick.a

e Magazines and vmem paper: http://static.usenix.org/publications/
library/proceedings/usenix01/full_papers/bonwick/bonwick html/

 Per-thread caching details: http://dtrace.org/blogs/rm/
2012/07/16/per-thread-caching-in-libumem/

e libumem dcmds overview: https://blogs.oracle.com/jwadams/
entry/debugging with_libumem_and mdb

e libumem debugging: http://developers.sun.com/solaris/articles/
libumem_library.html

Friday, August 17, 2012

