
Adding per-thread 
caching to libumem

Robert Mustacchi

Friday, August 17, 2012



What is libumem?

• A drop in replacement implementation of malloc(3C) and free
(3C) Adding per-thread caching to libumem

• Which are the functions that are called to allocate memory in C 
programs

• The functions people call that causes VSZ and RSS go up in ps

• The tools to figure out where that’s coming from

Friday, August 17, 2012



Why does it matter?

• Every program ends up calling malloc at some point in time

• In C++ calling new() ends up using malloc

• Garbage collected languages still end up calling malloc

• Examples:
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -c kstat
671598 (Perl)
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -c hg
3801 (Python)
dtrace -n 'pid$target::malloc:entry{ @ = count(); }' -c 'vmadm list'
2754 (Node.js)

Friday, August 17, 2012



Why does it matter?

Friday, August 17, 2012



How malloc works - circa 1988

• Only one thread can be in malloc at a time

• We keep track of free space in a binary tree

• Search through the binary tree to find something that fits your 
request

• If you can’t find something that fits, increase the size of the heap

Friday, August 17, 2012



Enter the slab allocator - circa 1994

• Created by Jeff Bonwick for Solaris 2.4

• Object caching
• Lots of objects are commonly allocated and freed
• Allocate a bunch and have them be primed
• Rather than deallocate it every time, but it back on stand by

• Used all over the kernel
• Inodes, ARC data, message blocks

• Lock is on the cache, only one thread can be in the cache at a 
time

• Adds support for basic debugging, use after free, etc.

Friday, August 17, 2012



Enter Magazines - Circa 1995

• Introduced by Jeff Bonwick in Solaris 2.5.

• Having to lock the entire object cache doesn’t scale with many 
CPUs

• Each CPU gets a magazine per cache (think automatic weapon)

• When the magazine runs out, grab the global cache lock and 
reload

• Magazine size is increased dynamically based on contention

• Continue to pad things onto hardware caches and use cache 
coloring

Friday, August 17, 2012



Enter libumem - 2001

• Introduced by Jonathan Adams and Jeff Bonwick in Solaris 9u3

• Take the kernel allocator and bring it to userland

• Brings all of the debugging to userland
• Once you use ::findleaks, ::whatis, it’s hard to go back

• Use caches for malloc

• Use it in two ways:
• Add -lumem to your Makefile
• Use LD_PRELOAD=libumem.so

Friday, August 17, 2012



Where does libumem start to break down?

• Grabbing an uncontended lock in the kernel is cheap
• It’s 4 instructions!
• Optimized for non-contention

• Grabbing an unconteded lock in userland is more expensive
• Userland locks need to deal with many more edge conditions
• The kernel exploits unholy knowledge to accelerate in-kernel mutexes

• Every allocation requires you to grab a lock

• Some applications are bad actors, they do lots of mallocs and 
frees of the same sized data
• We’ve seen on the order of 10k-100k per second

• Customers complain because other mallocs are faster

Friday, August 17, 2012



Focusing on the right problem

• Our problem is that we need to synchronize
• Just rewriting everything to be lockfree using atomic operations doesn’t 

magically solve our problems

• Eliminate the synchronization

• Add a per-thread cache

Friday, August 17, 2012



Careful planning

• When you allocate memory a tag is prepended
• It is either 8 or 16 bytes (depending on size and architecture)
• We don’t want to increase that

• We don’t want to increase fragmentation

• We want to build our cache based on the umem cache size

• The size of the caches aren’t known at compile time

Friday, August 17, 2012



Dynamic Generation

• libc gives each thread 16 slots in the thread’s uberdata

• During umem_init we determine the final set of cache sizes

• Each uberdata slot is the head of a linked list of recently freed 
buffers

• We use that information and dynamically generate the machine 
code for malloc and free
• Need to avoid loads for performance

• Each slot maps directly to one of the first sixteen caches 

• Threads free their cache when they exit

Friday, August 17, 2012



Per-thread caching in action

Friday, August 17, 2012



Per-thread caching in action

Friday, August 17, 2012



Our original flamegraph

Friday, August 17, 2012



Peaking under the hood

Friday, August 17, 2012



Tuning and introspection

• Default cache size is 1 MB

• Tuned via UMEM_OPTIONS=perthread_cache=size

• Bryan Cantrill added support to ::umastat to see what’s being 
used

memory    %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %   %
tid  cached cap   8  16  24  32  40  48  56  64  80  96 112 128 160 192 224 256 
--- ------- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
  1    210K  20   0   0   2   1   0   0   0   0   0   0   0   0  93   0   1   0 
  2       0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
  3       0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Friday, August 17, 2012



References

• Original slab allocator paper: http://static.usenix.org/publications/
library/proceedings/bos94/full_papers/bonwick.a

• Magazines and vmem paper: http://static.usenix.org/publications/
library/proceedings/usenix01/full_papers/bonwick/bonwick_html/

• Per-thread caching details: http://dtrace.org/blogs/rm/
2012/07/16/per-thread-caching-in-libumem/

• libumem dcmds overview: https://blogs.oracle.com/jwadams/
entry/debugging_with_libumem_and_mdb

• libumem debugging: http://developers.sun.com/solaris/articles/
libumem_library.html

Friday, August 17, 2012


